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Introduction 
Computational geometry problems occur quite frequently in Olympiad problems. It is 
essential to know at least some of the basics before going to any major programming 
competition. In addition to what is written here it will be useful to remember all high 
school geometry and to make use of common sense. 
 
Points and Lines 
A point is easily represented as a coordinate pair. In some cases it is necessary to use 
floating-point variables. However, to avoid the problems associated with floating-
point variables, these algorithms will mainly make use of integer coordinates. 
 
Although there are several different ways to represent lines, I will represent them as a 
pair of points. 
 
CCW 
The first and most important operation that is essential to many geometric solutions is 
the counter-clockwise function. Given the coordinates of 3 points, this function 
returns 1 if the points are in counter-clockwise order, -1 if they are in clockwise order, 
and 0 if they are collinear. 
 
int ccw(CPoint a, CPoint b, CPoint c) 
{ 
    int dx1 = b.x - a.x; 
    int dx2 = c.x - a.x; 
    int dy1 = b.y - a.y; 
    int dy2 = c.y - a.y; 
     
    if(dx1*dy2 > dy1*dx2) 
        return 1; 
         
    if(dx1*dy2 < dy1*dx2) 
        return -1; 
         
    return 0; 
}  
 
This is done by simply comparing the gradients of the lines formed between the first 
and the second point and between the first and the third point. To avoid a division by 
0, you can multiply through by dx1*dx2. 
 
Line Segment Intersection 
It is now easy to test for the intersection of two line segments. If both endpoints of 
each line are on the on different sides of the other, then the line segments must 
intersect: 
 
bool intersect(CLine l1, CLine l2) 
{ 
    return ((ccw(l1.p1, l1.p2, l2.p1)*ccw(l1.p1, l1 .p2, l2.p2) < 0) 
        &&  (ccw(l2.p1, l2.p2, l1.p1)*ccw(l2.p1, l2 .p2, l1.p2) < 0)); 
} 
 



A simple closed path through random points 

This function, however, does not check for the case where the endpoint of one line 
segment lies on the other, or if the line segments lie on top of each other. It is 
important to note that when working with geometry there are often many different 
special cases that need to be tested for, as in this situation. Whether these special 
cases are possible with the given input data or need to be tested for depends on the 
problem requirements. 
 
The following code completes the above intersect function. 
 
    if(ccw(l1.p1, l1.p2, l2.p1) == 0) 
        return point_in_box(l1.p1, l1.p2, l2.p1); 
         
    if(ccw(l1.p1, l1.p2, l2.p2) == 0) 
        return point_in_box(l1.p1, l1.p2, l2.p2); 
         
    if(ccw(l2.p1, l2.p2, l1.p1) == 0) 
        return point_in_box(l2.p1, l2.p2, l1.p1); 
 
    if(ccw(l2.p1, l2.p2, l1.p2) == 0) 
        return point_in_box(l2.p1, l2.p2, l1.p2); 

 
Where the point_in_box function is: 
 
bool point_in_box(CPoint corner1, CPoint corner2, C Point point) 
{ 
    int x1 = min(corner1.x, corner2.x); 
    int x2 = max(corner1.x, corner2.x); 
    int y1 = min(corner1.y, corner2.y); 
    int y2 = max(corner1.y, corner2.y); 
     
    return (point.x >= x1 && point.x <= x2 &&  

point.y >= y1 && point.y <= y2); 
} 

 
Simple Closed Path 
Given a set of N random points on a plane it is sometimes necessary to find a path 
through all of the points that does not intersect itself and returns to the point at which 
it started. Such a path is called a simple closed path. This is an elementary problem 
because it asks for any such path, unlike the traveling salesman problem, which asks 
for the best path. 
 
A simple way to solve this 
problem is to choose an anchor 
point, such as the bottom most 
point, choosing the left most of all 
the points that share the same y-
value. This point can be considered 
the first point. All the other points 
are then sorted according to the 
angle made between the point, the 
anchor, and the horizontal line 
through the anchor. This method is 
slow, however, because angles 
need to be calculated. It can be 



The convex hull around a set of points 

made much faster by instead, in sorting, comparing the points directly and not the 
angles. This is where the ccw function becomes handy again. 
 
CPoint anchor; 
bool compare_points(CPoint a, CPoint b) 
{ 
    int is_ccw = ccw(anchor, a, b); 
    if(is_ccw == 1) 
        return true; 
 
    if(is_ccw == -1) 
        return false; 
         
    //check distances 
    return ((anchor.x-a.x)*(anchor.x-a.x) +  

(anchor.y-a.y)*(anchor.y-a.y)) < 
           ((anchor.x-b.x)*(anchor.x-b.x) +  

(anchor.y-b.y)*(anchor.y-b.y)); 
} 

 
Notice that, if the points are collinear, they are sorted according to the distance from 
the anchor point. The reason for this will become clear later. 
 
Finding the simple closed path is now a simple matter of sorting, using the given 
comparison function. 
 
CPoint points[NumPoints]; 
void simple_closed_path() 
{ 
    anchor = points[bottomleft()]; 
    sort(points, &points[NumPoints], compare_points ); 
}  
 
Convex Hull 
The convex hull of a set of points is defined to be the smallest convex polygon that 
contains all the points. Equivalently, it is the shortest path surrounding all the points. 
It is easy to prove that the vertices of the convex hull are points from the original 
point set. The most natural way of thinking about the convex hull is to imagine a set 
of posts randomly placed in a field, and you walk around them with a rope and tie it to 
itself after walking all the way around. If the rope is tight around the posts, it forms 
the convex hull. 
 
The convex hull of a set of points 
can be found intuitively as follows: 
Find a point known to be on the 
convex hull, such as the one with the 
smallest y coordinate. Imagine 
starting with a horizontal line 
through this first point that rotates 
upwards around this point until it 
hits another point. This next point 
has to be on the hull. The process 
can be repeated from this point, each 
time finding another point on the 



hull until it gets back to the original point. Now consider the procedure for finding the 
simple closed path that was described previously. When starting with an anchor that is 
on the convex hull, clearly the next point in the simple closed path and the last point 
in the path have to be on the hull as well. Thus 2 new points on the hull have been 
found. Finding the simple closed path using the next point on the hull as an anchor 
will produce the next point. This is a simple method for finding the convex hull, 
although it is very slow. The next section will describe a faster method. 
 
The Graham Scan 
The Graham Scan was invented by R L Graham in 1972. It starts, as above, by finding 
a point from the given set known to be on the convex hull. It then finds the simple 
closed path through all the points, using this starting point as the anchor. From here 
on, once the sorting has been done, the Graham Scan runs in linear time. Start 
“walking” down the path in a counter-clockwise direction, assuming all the points you 
come to are on the convex hull. When walking counter-clockwise along a convex 
polygon, you should only be turning left. Therefore, when you come to a point where 
you have to turn right to get to the next point, you know that the point you are on 
could not possibly be on the convex hull. You therefore remove all the most recent 
points from your list of points on the convex hull until you get to a point at which you 
are not required to turn right to proceed. It is better described by the following 
algorithm: 
 
int grahamscan() 
{ 
    int M, i; 
    CPoint t; 
    simple_closed_path(); 
     
    //sentinal value at the end 
    points[NumPoints] = points[0]; 
    M = 2; 
     
    for(i = 3; i < NumPoints; i++) 
    { 
        while(ccw(points[M], points[M-1], points[i] ) >= 0) 
            M = M-1; 
 
        M = M+1; 
         
   //swap 
        t = points[M]; points[M] = points[i]; point s[i] = t; 
    } 
    M = M+1;  
    return M; 
} 
 

After calling this function, the first M values in the array of points will contain the 
points forming the vertices of the convex hull in order, starting at the anchor. The rest 
of the interior points will be in a random order in the rest of the array. Notice that this 
function returns the value of M. 
 
Point Location 
Another common problem in computational geometry is that of determining whether 
a given point lies inside a certain polygon. The easiest method of solving this problem 



is by imagining a line starting at the point and extending in some direction to infinity. 
By counting the number of intersections between the line and edges of the polygon, 
the location of the point can be found. If the line crossed the edges of the polygon an 
even number of times, the point must be outside the boundaries of the polygon. 
Otherwise, the point lies on the inside. This problem can be simplified 
computationally by choosing a horizontal or vertical line to stretch from the point to 
infinity. 
 
Area Computations 
A formula worth remembering is the following: 
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It returns the area of any polygon, given its vertices. n is the number of vertices. 
 
It can be implemented as follows: 
double area() 
{ 
    double total = 0.0; 
    int i, j; 
     
    for(i = 0; i < NumPoints; i++) 
    { 
        j = (i+1) % NumPoints; 
        total += (points[i].x*points[j].y) –  

     (points[j].x*points[i].y); 
    } 
     
    return total / 2; 
} 
 

 


