
Computational Geometry
Migael Strydom

Introduction
Computational geometry problems occur quite frequently in Olympiad problems. It is
essential to know at least some of the basics before going to any major programming
competition. In addition to what is written here it will be useful to remember all high
school geometry and to make use of common sense.

Points and Lines
A point is easily represented as a coordinate pair. In some cases it is necessary to use
floating-point variables. However, to avoid the problems associated with floating-
point variables, these algorithms will mainly make use of integer coordinates.

Although there are several different ways to represent lines, I will represent them as a
pair of points.

CCW
The first and most important operation that is essential to many geometric solutions is
the counter-clockwise function. Given the coordinates of 3 points, this function
returns 1 if the points are in counter-clockwise order, -1 if they are in clockwise order,
and 0 if they are collinear.

int ccw(CPoint a, CPoint b, CPoint c)
{
 int dx1 = b.x - a.x;
 int dx2 = c.x - a.x;
 int dy1 = b.y - a.y;
 int dy2 = c.y - a.y;

 if(dx1*dy2 > dy1*dx2)
 return 1;

 if(dx1*dy2 < dy1*dx2)
 return -1;

 return 0;
}

This is done by simply comparing the gradients of the lines formed between the first
and the second point and between the first and the third point. To avoid a division by
0, you can multiply through by dx1*dx2.

Line Segment Intersection
It is now easy to test for the intersection of two line segments. If both endpoints of
each line are on the on different sides of the other, then the line segments must
intersect:

bool intersect(CLine l1, CLine l2)
{
 return ((ccw(l1.p1, l1.p2, l2.p1)*ccw(l1.p1, l1 .p2, l2.p2) < 0)
 && (ccw(l2.p1, l2.p2, l1.p1)*ccw(l2.p1, l2 .p2, l1.p2) < 0));
}

A simple closed path through random points

This function, however, does not check for the case where the endpoint of one line
segment lies on the other, or if the line segments lie on top of each other. It is
important to note that when working with geometry there are often many different
special cases that need to be tested for, as in this situation. Whether these special
cases are possible with the given input data or need to be tested for depends on the
problem requirements.

The following code completes the above intersect function.

 if(ccw(l1.p1, l1.p2, l2.p1) == 0)
 return point_in_box(l1.p1, l1.p2, l2.p1);

 if(ccw(l1.p1, l1.p2, l2.p2) == 0)
 return point_in_box(l1.p1, l1.p2, l2.p2);

 if(ccw(l2.p1, l2.p2, l1.p1) == 0)
 return point_in_box(l2.p1, l2.p2, l1.p1);

 if(ccw(l2.p1, l2.p2, l1.p2) == 0)
 return point_in_box(l2.p1, l2.p2, l1.p2);

Where the point_in_box function is:

bool point_in_box(CPoint corner1, CPoint corner2, C Point point)
{
 int x1 = min(corner1.x, corner2.x);
 int x2 = max(corner1.x, corner2.x);
 int y1 = min(corner1.y, corner2.y);
 int y2 = max(corner1.y, corner2.y);

 return (point.x >= x1 && point.x <= x2 &&

point.y >= y1 && point.y <= y2);
}

Simple Closed Path
Given a set of N random points on a plane it is sometimes necessary to find a path
through all of the points that does not intersect itself and returns to the point at which
it started. Such a path is called a simple closed path. This is an elementary problem
because it asks for any such path, unlike the traveling salesman problem, which asks
for the best path.

A simple way to solve this
problem is to choose an anchor
point, such as the bottom most
point, choosing the left most of all
the points that share the same y-
value. This point can be considered
the first point. All the other points
are then sorted according to the
angle made between the point, the
anchor, and the horizontal line
through the anchor. This method is
slow, however, because angles
need to be calculated. It can be

The convex hull around a set of points

made much faster by instead, in sorting, comparing the points directly and not the
angles. This is where the ccw function becomes handy again.

CPoint anchor;
bool compare_points(CPoint a, CPoint b)
{
 int is_ccw = ccw(anchor, a, b);
 if(is_ccw == 1)
 return true;

 if(is_ccw == -1)
 return false;

 //check distances
 return ((anchor.x-a.x)*(anchor.x-a.x) +

(anchor.y-a.y)*(anchor.y-a.y)) <
 ((anchor.x-b.x)*(anchor.x-b.x) +

(anchor.y-b.y)*(anchor.y-b.y));
}

Notice that, if the points are collinear, they are sorted according to the distance from
the anchor point. The reason for this will become clear later.

Finding the simple closed path is now a simple matter of sorting, using the given
comparison function.

CPoint points[NumPoints];
void simple_closed_path()
{
 anchor = points[bottomleft()];
 sort(points, &points[NumPoints], compare_points);
}

Convex Hull
The convex hull of a set of points is defined to be the smallest convex polygon that
contains all the points. Equivalently, it is the shortest path surrounding all the points.
It is easy to prove that the vertices of the convex hull are points from the original
point set. The most natural way of thinking about the convex hull is to imagine a set
of posts randomly placed in a field, and you walk around them with a rope and tie it to
itself after walking all the way around. If the rope is tight around the posts, it forms
the convex hull.

The convex hull of a set of points
can be found intuitively as follows:
Find a point known to be on the
convex hull, such as the one with the
smallest y coordinate. Imagine
starting with a horizontal line
through this first point that rotates
upwards around this point until it
hits another point. This next point
has to be on the hull. The process
can be repeated from this point, each
time finding another point on the

hull until it gets back to the original point. Now consider the procedure for finding the
simple closed path that was described previously. When starting with an anchor that is
on the convex hull, clearly the next point in the simple closed path and the last point
in the path have to be on the hull as well. Thus 2 new points on the hull have been
found. Finding the simple closed path using the next point on the hull as an anchor
will produce the next point. This is a simple method for finding the convex hull,
although it is very slow. The next section will describe a faster method.

The Graham Scan
The Graham Scan was invented by R L Graham in 1972. It starts, as above, by finding
a point from the given set known to be on the convex hull. It then finds the simple
closed path through all the points, using this starting point as the anchor. From here
on, once the sorting has been done, the Graham Scan runs in linear time. Start
“walking” down the path in a counter-clockwise direction, assuming all the points you
come to are on the convex hull. When walking counter-clockwise along a convex
polygon, you should only be turning left. Therefore, when you come to a point where
you have to turn right to get to the next point, you know that the point you are on
could not possibly be on the convex hull. You therefore remove all the most recent
points from your list of points on the convex hull until you get to a point at which you
are not required to turn right to proceed. It is better described by the following
algorithm:

int grahamscan()
{
 int M, i;
 CPoint t;
 simple_closed_path();

 //sentinal value at the end
 points[NumPoints] = points[0];
 M = 2;

 for(i = 3; i < NumPoints; i++)
 {
 while(ccw(points[M], points[M-1], points[i]) >= 0)
 M = M-1;

 M = M+1;

 //swap
 t = points[M]; points[M] = points[i]; point s[i] = t;
 }
 M = M+1;
 return M;
}

After calling this function, the first M values in the array of points will contain the
points forming the vertices of the convex hull in order, starting at the anchor. The rest
of the interior points will be in a random order in the rest of the array. Notice that this
function returns the value of M.

Point Location
Another common problem in computational geometry is that of determining whether
a given point lies inside a certain polygon. The easiest method of solving this problem

is by imagining a line starting at the point and extending in some direction to infinity.
By counting the number of intersections between the line and edges of the polygon,
the location of the point can be found. If the line crossed the edges of the polygon an
even number of times, the point must be outside the boundaries of the polygon.
Otherwise, the point lies on the inside. This problem can be simplified
computationally by choosing a horizontal or vertical line to stretch from the point to
infinity.

Area Computations
A formula worth remembering is the following:

∑
−

=

++ ⋅−⋅=
1

0

11
2

1 n

i

iiii yxyxA

It returns the area of any polygon, given its vertices. n is the number of vertices.

It can be implemented as follows:
double area()
{
 double total = 0.0;
 int i, j;

 for(i = 0; i < NumPoints; i++)
 {
 j = (i+1) % NumPoints;
 total += (points[i].x*points[j].y) –

 (points[j].x*points[i].y);
 }

 return total / 2;
}

